Abstract

Large variations in stock prices happen with sufficient frequency to raise doubts about existing models, which all fail to account for non-Gaussian statistics. We construct simple models of a stock market, and argue that the large variations may be due to a crowd effect, where agents imitate each other's behavior. The variations over different time scales can be related to each other in a systematic way, similar to the Levy stable distribution proposed by Mandelbrot to describe real market indices. In the simplest least realistic case, exact results for the statistics of the variations are derived by mapping onto a model of diffusing and annihilating particles, which has been solved by quantum field theory methods. When the agents imitate each other and respond to recent market volatility, different scaling behavior is obtained. In this case, the statistics of price variations is consistent with empirical observations. The interplay between “rational” traders whose behavior is derived from fundamental analysis of the stock, including dividends, and “noise traders”, whose behavior is governed solely by studying the market dynamics and the behavior of other traders, is investigated. When the relative number of rational traders is small, “bubbles” often occur, where the market price moves outside the range justified by fundamental market analysis. When the number of rational traders is larger, the market price is generally locked within the price range they define.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.