Abstract

AbstractWe present first‐ and higher‐order non‐oscillatory primitive (PRI) centred (CE) numerical schemes for solving systems of hyperbolic partial differential equations written in primitive (or non‐conservative) form. Non‐conservative systems arise in a variety of fields of application and they are adopted in that form for numerical convenience, or more importantly, because they do not posses a known conservative form; in the latter case there is no option but to apply non‐conservative methods. In addition we have chosen a centred, as distinct from upwind, philosophy. This is because the systems we are ultimately interested in (e.g. mud flows, multiphase flows) are exceedingly complicated and the eigenstructure is difficult, or very costly or simply impossible to obtain. We derive six new basic schemes and then we study two ways of extending the most successful of these to produce second‐order non‐oscillatory methods. We have used the MUSCL‐Hancock and the ADER approaches. In the ADER approach we have used two ways of dealing with linear reconstructions so as to avoid spurious oscillations: the ADER TVD scheme and ADER with ENO reconstruction. Extensive numerical experiments suggest that all the schemes are very satisfactory, with the ADER/ENO scheme being perhaps the most promising, first for dealing with source terms and secondly, because higher‐order extensions (greater than two) are possible. Work currently in progress includes the application of some of these ideas to solve the mud flow equations. The schemes presented are generic and can be applied to any hyperbolic system in non‐conservative form and for which solutions include smooth parts, contact discontinuities and weak shocks. The advantage of the schemes presented over upwind‐based methods is simplicity and efficiency, and will be fully realized for hyperbolic systems in which the provision of upwind information is very costly or is not available. Copyright © 2003 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call