Abstract

Documenting the impacts of the Pleistocene megafaunal extinctions on predator-prey interactions is a challenge because of the incomplete fossil record and depauperate extant community structure. We used a comparative ecological approach to investigate whether the existing prey preference patterns of jaguars Panthera onca were potentially affected by the Pleistocene extinctions in the Americas compared with large felids in Africa and Asia. We reviewed the literature and found 25 studies reporting 3214 jaguar kills recorded throughout the species’ distribution. We found that jaguars significantly preferred capybara Hydrochaeris hydrochaeris and giant anteater Myrmecophaga tridactyla, and avoided agoutis, carnivorans, primates, black-eared opossum Didelphis marsupialis and tapirs. Generalised linear models showed that jaguars select prey primarily based on socio-ecological and behavioural traits (abundance and herd size), rather than morphological characteristics (body size). Nonetheless, their accessible prey weight range was 6-60 kg, preferred prey weight range was 45-85 kg, and mean mass of significantly preferred prey was 32 ± 13 kg leading to a predator to prey body mass ratio of 1:0.53, which is much less than that of other solitary felids. Compared with other large, solitary felids, jaguars have an unusual predator to prey body mass ratio, show limited effect of prey morphology as a driver of prey selection, lack evidence of optimal foraging beyond their preferred prey, and an absence of preferentially hunting on Cetartiodactyla herbivores. These features, coupled with the reduction in jaguar body mass since the Pleistocene, suggest that the loss of larger potential prey items within the preferred and accessible weight ranges at the end-Pleistocene still affects jaguar predatory behaviour. It may be that jaguars survived this mass extinction event by preferentially preying on relatively small species.

Highlights

  • Understanding how foraging individuals decide upon what to feed is essential for predicting links and feedbacks among individuals at the population level and amongst trophic levels (Railsback and Harvey, 2013)

  • The jaguar is the largest felid in the Americas (Nowell and Jackson, 1996) and is currently listed on the IUCN Red List as Near Threatened based on a high likelihood of persistence over most of its wide (8.75 million km2) distribution (Caso et al, 2008), they will soon qualify for Vulnerable status given current rates of habitat loss, reductions of their prey base, and human persecution

  • The decline in range since the mid-Pleistocene was accompanied by a 15–20% reduction in body mass and a change in limb proportions, such that extant jaguars have shorter metapodials, FIGURE 1 | Distribution map of the jaguar and location of study sites

Read more

Summary

Introduction

Understanding how foraging individuals decide upon what to feed is essential for predicting links and feedbacks among individuals at the population level and amongst trophic levels (Railsback and Harvey, 2013). Morphological and behavioral characteristics of prey have previously been shown to be drivers of large predator prey selection (Hayward and Kerley, 2005). These elements may not contribute uniformly across all predators given the different evolutionary histories of the New and Old World. The jaguar is the largest felid in the Americas (Nowell and Jackson, 1996) and is currently listed on the IUCN Red List as Near Threatened based on a high likelihood of persistence over most of its wide (8.75 million km2) distribution (Caso et al, 2008), they will soon qualify for Vulnerable status given current rates of habitat loss, reductions of their prey base, and human persecution

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call