Abstract
SummaryWe investigated the retention of dimethylsulfoniopropionate (DMSP) in phototrophic dinoflagellates arising from mixotrophy by estimating the cellular content of DMSP in Karlodinium veneficum (mixotrophic growth) fed for 7–10 days on either DMSP-rich Amphidinium carterae (phototrophic growth only) or DMSP-poor Teleaulax sp. (phototrophic growth only). In K. veneficum fed on DMSP-poor prey, the cellular content of DMSP remained almost unchanged regardless of the rate of feeding, whereas the cellular content of DMSP in cells of K. veneficum fed on DMSP-rich prey increased by as much as 21 times the cellular concentration derived exclusively from phototrophic growth. In both cases, significant fractions (10–32% in the former case and 55–65% in the latter) of the total DMSP ingested by K. veneficum were transformed into dimethylsulfide and other biochemical compounds. The results may indicate that the DMSP content of prey species affects temporal variations in the cellular DMSP content of mixotrophic dinoflagellates, and that mixotrophic dinoflagellates produce DMS through grazing on DMSP-rich preys. Additional studies should be performed to examine the universality of our finding in other mixotrophic dinoflagellates feeding on diverse prey species.
Highlights
Since the Gaia hypothesis was proposed as a possible regulatory mechanism for the earth’s climate, involving alterations to the global radiation balance (Lovelock et al, 1972; Charlson et al, 1987), numerous studies have investigated the formation of dimethylsulfide (DMS) in marine environments and its ultimate release to the atmosphere
We report here that the cellular content of DMSP in a mixotrophic dinoflagellate varied with the DMSP content of the ingested prey species
Our study provides the first evidence that K. veneficum feeds on the dinoflagellate species A. carterae
Summary
We investigated the retention of dimethylsulfoniopropionate (DMSP) in phototrophic dinoflagellates arising from mixotrophy by estimating the cellular content of DMSP in Karlodinium veneficum (mixotrophic growth) fed for 7–10 days on either DMSPrich Amphidinium carterae (phototrophic growth only) or DMSP-poor Teleaulax sp. (phototrophic growth only). We investigated the retention of dimethylsulfoniopropionate (DMSP) in phototrophic dinoflagellates arising from mixotrophy by estimating the cellular content of DMSP in Karlodinium veneficum (mixotrophic growth) fed for 7–10 days on either DMSPrich Amphidinium carterae (phototrophic growth only) or DMSP-poor Teleaulax sp. In K. veneficum fed on DMSP-poor prey, the cellular content of DMSP remained almost unchanged regardless of the rate of feeding, whereas the cellular content of DMSP in cells of K. veneficum fed on DMSP-rich prey increased by as much as 21 times the cellular concentration derived exclusively from phototrophic growth. In both cases, significant fractions (10–32% in the former case and 55–65% in the latter) of the total DMSP ingested by K. veneficum were transformed into dimethylsulfide and other biochemical compounds. Additional studies should be performed to examine the universality of our finding in other mixotrophic dinoflagellates feeding on diverse prey species
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.