Abstract

Using a comprehensive chemical genetics approach, we identified a member of the lignan natural product family, HTP-013, which exhibited significant cytotoxicity across various cancer cell lines. Correlation of compound activity across a panel of reporter gene assays suggested the vacuolar-type ATPase (v-ATPase) as a potential target for this compound. Additional cellular studies and a yeast haploinsufficiency screen strongly supported this finding. Competitive photoaffinity labeling experiments demonstrated that the ATP6V0A2 subunit of the v-ATPase complex binds directly to HTP-013, and further mutagenesis library screening identified resistance-conferring mutations in ATP6V0A2. The positions of these mutations suggest the molecule binds a novel pocket within the domain of the v-ATPase complex responsible for proton translocation. While other mechanisms of v-ATPase regulation have been described, such as dissociation of the complex or inhibition by natural products including bafilomycin A1 and concanamycin, this work provides detailed insight into a distinct binding pocket within the v-ATPase complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call