Abstract

The use of organic amendments in agriculture could sustain crop production and preserve the agroecosystem, due to their importance in the conservation of organic matter in soil. The objective of this research was to evaluate the effects of differing organic fertilizers and of previous crops on lettuce growth, nutritional status and yields. The effects on soil characteristics were further investigated. The research was carried out during two years (2006 and 2007) at Metaponto (MT) in southern Italy, on lettuce crops cultivated after eggplant and melon to avoid their continuous cropping. The effects of application of a mineral fertilizer (MF), and of three treatments with organic fertilizers (commercial stable manure - OM; anaerobic digestate based on wine distillery wastewater - AD; composted municipal solid organic wastes coming from the separate collection - MSW) were studied. Head average weight, leaf area index, nitrate content and SPAD readings during the cropping cycles did not show significant differences among fertilizer treatments. On the contrary, marketable yield and head average weight at the harvest presented significantly different among the three organic fertilizers. The average marketable yield and head average weight of organic fertilizers experimental (AD and MSW treatments) decreased of 16 and 17%, respectively, compared to OM treatment. The previous melon crop influenced positively all analyzed parameters of the lettuce compared with previous eggplant crop. The previous melon crop reached the highest marketable yield with an increase of 59% compared with previous eggplant crop. Compared to the mineral fertilizer, the organic ones significantly increased the extracted fraction of soil organic carbon (6.9, 10.7 and 14.9% for OM, AD and MSW, respectively), without significant changes for the humic and fulvic content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.