Abstract

BackgroundSalvia officinalis (sage) is a native plant to the Mediterranean region and has been used for a long time in traditional medicine for various diseases. We investigated possible anti-diabetic, anti-inflammatory and anti-obesity effects of sage methanol (MetOH) extract in a nutritional mouse model of obesity, inflammation and insulin resistance, as well as its effects on lipolysis and lipogenesis in 3T3-L1 cells.MethodsDiet-induced obese (DIO) mice were treated for five weeks with sage methanol extract (100 and 400 mg kg−1/day bid), or rosiglitazone (3 mg kg−1/day bid), as a positive control. Energy expenditure, food intake, body weight, fat mass, liver glycogen and lipid content were evaluated. Blood glucose, and plasma levels of insulin, lipids leptin and pro- and anti-inflammatory cytokines were measured throughout the experiment. The effects of sage MetOH extract on lipolysis and lipogenesis were tested in vitro in 3T3-L1 cells.ResultsAfter two weeks of treatment, the lower dose of sage MetOH extract decreased blood glucose and plasma insulin levels during an oral glucose tolerance test (OGTT). An insulin tolerance test (ITT), performed at day 29 confirmed that sage improved insulin sensitivity. Groups treated with low dose sage and rosiglitazone showed very similar effects on OGTT and ITT. Sage also improved HOMA-IR, triglycerides and NEFA. Treatment with the low dose increased the plasma levels of the anti-inflammatory cytokines IL-2, IL-4 and IL-10 and reduced the plasma level of the pro-inflammatory cytokines IL-12, TNF-α, and KC/GRO. The GC analysis revealed the presence of two PPARs agonist in sage MetOH extract. In vitro, the extract reduced in a dose-related manner the accumulation of lipid droplets; however no effect on lipolysis was observed.ConclusionsSage MetOH extract at low dose exhibits similar effects to rosiglitazone. It improves insulin sensitivity, inhibits lipogenesis in adipocytes and reduces inflammation as judged by plasma cytokines. Sage presents an alternative to pharmaceuticals for the treatment of diabetes and associated inflammation.

Highlights

  • In the recent decades, there has been renewed interest in traditional and alternative medicine and thousands of potential medicinal plants have been screened to identify bio-active lead components

  • There was no change in fasted blood glucose in all treated groups, but 30 min following the glucose load, the blood glucose levels in mice treated with high (p < 0.05) and low (p < 0.001) dose of sage extract, and mice treated with rosiglitazone (p < 0.001) were significantly lower, compared to the control group values (Fig. 2A)

  • The present study investigated the effect of sage extract on lipolysis and lipogenesis in murine pre-adipocytes (3T3-L1), as well as the protective properties of low and high doses of the plant extract on inflammation, obesity and insulin resistance in a high fat diet (HFD) animal model

Read more

Summary

Introduction

There has been renewed interest in traditional and alternative medicine and thousands of potential medicinal plants have been screened to identify bio-active lead components. Eidi, Eidi & Zamanizadeh (2005) showed that sage methanolic (MetOH) extract given intraperitoneally reduced significantly serum glucose in fasted streptozotocin (STZ)-induced diabetic rats without changes in plasma insulin levels. Sage ethanolic extract significantly decreased serum glucose, triglycerides and total cholesterol, whereas it increased serum insulin levels in STZ-treated diabetic rats as compared with control diabetic rats (Eidi & Eidi, 2009). After two weeks of treatment, the lower dose of sage MetOH extract decreased blood glucose and plasma insulin levels during an oral glucose tolerance test (OGTT). Sage MetOH extract at low dose exhibits similar effects to rosiglitazone. It improves insulin sensitivity, inhibits lipogenesis in adipocytes and reduces inflammation as judged by plasma cytokines. Sage presents an alternative to pharmaceuticals for the treatment of diabetes and associated inflammation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call