Abstract

This study investigated the preventive effects of whey protein fermented with Lactobacillus gasseri IM13 (F-WP) against dexamethasone (DEX)-induced muscle atrophy. C2C12 muscle cells were treated with F-WP followed by DEX treatment. Dexamethasone treatment inhibited myotube formation and the expression of myogenic regulatory factors; however, pretreatment with F-WP attenuated DEX-induced damage. The F-WP significantly activated the phosphorylation of the IGF-1/PI3K/AKT pathway and improved muscle homeostasis suppressed by DEX. Moreover, F-WP alleviated the phosphorylation of mTOR, S6K1, and 4E-BP1 and enhanced muscle protein synthesis. Muscle-specific ubiquitin ligases and autophagy lysosomes, which were activated by the dephosphorylation of FOXO3a by DEX treatment, were significantly attenuated by F-WP pretreatment of myotubes. For peptidomic analysis, F-WP was fractionated using preparative HPLC (prep-HPLC), and the AA sequences of 11 peptides were identified using MALDI-TOF/MS/MS. In conclusion, fermentation of whey protein by the specific probiotic strain IM13 produced bioactive peptides with high antioxidant and anti-sarcopenic-sarcopenic effects, which markedly enhanced myogenesis and muscle protein synthesis while diminishing muscle protein degradation compared with intact whey protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call