Abstract
The present study aimed to evaluate the therapeutic potential of apocynin, an NADPH oxidase assembly inhibitor, on traumatic brain injury. Rat traumatic brain injury (TBI) was performed using a weight drop model. Apocynin (100mg/kg) was injected into the intraperitoneal space 15 min before TBI. Reactive oxygen species (ROS) in the hippocampal CA3 pyramidal neurons were detected by dihydroethidium (dHEt) at 3h after TBI. Oxidative injury was detected by 4-hydroxy-2-nonenal (4HNE) at 6h after TBI. Blood-brain barrier disruption was detected by IgG extravasation and neuronal death was evaluated with Fluoro Jade-B staining 24h after TBI. Microglia activation was detected by CD11b immunohistochemistry in the hippocampus at 1 week after TBI. ROS production was inhibited by apocynin administration in the hippocampal CA3 pyramidal neurons. This pre-treatment with apocynin decreased the blood-brain barrier disruption, the number of degenerating neurons in the hippocampal CA3 region and microglial activation after TBI. The present study indicates that apocynin pre-treatment prevents TBI-induced ROS production, thus decreasing BBB disruption, neuronal death and microglial activation. Therefore, the present study suggests that inhibition of NADPH oxidase by apocynin may have a high therapeutic potential to reduce traumatic brain injury-induced neuronal death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.