Abstract

Using the membranes treated with Triton X-100, we studied the interaction between gamma-aminobutyric acid (GABA)B receptors and the GTP-binding proteins which are the substrates for ADP-ribosylation by the islet-activating protein (IAP), pertussis toxin. The addition of guanine nucleotides to the membranes markedly decreased the binding of GABA to GABAB receptors. Preincubation of the membranes with IAP plus NAD caused ADP-ribosylation of the 41,000- and 39,000-Da proteins selectively and decreased GABA binding to GABAB receptors in a time- and dose-dependent manner. This decrease of binding appeared to be due to the reduction of receptor affinity for agonist. The GTP-binding proteins which are ADP-ribosylated by IAP were purified from the membrane fraction of bovine cerebral cortex. The addition of the purified GTP-binding proteins to IAP-treated membranes restored the high affinity binding of GABA to GABAB receptor. The two GTP-binding proteins which were resolved by octyl-Sepharose column chromatography showed similar efficacy in restoring GABA binding. Thus, GABAB receptors are coupled to GTP-binding proteins, IAP-specific substrates, in the brain membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.