Abstract

The possibility of performance recovery of the sulfurated Ni-yttria stabilized zirconia anode electrode by shifting the anode electrode potential to the stable region, in which nickel exists as metal, is investigated. The effect of controlling the potential of the anode electrode to the stable region to suppress the generation of nickel sulfide is also revealed. The surface of Ni particle reacts with sulfur to form Ni3S2 in a low temperature region; however, the nickel is reduced to metallic by shifting the electrode potential to −1.9 V vs reference electrode exposed to O2. When the potential of the Ni-based anode electrode is maintained at the value of ≤ −1.9 V vs the reference electrode potential, the sulfidation of nickel is inhibited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.