Abstract

The role of Propionibacterium acnes in shoulder arthroplasty and broadly in orthopedic prosthetic infections has historically been underestimated, with biofilm formation identified as a key virulence factor attributed to invasive isolates. With an often indolent clinical course, P acnes infection can be difficult to detect and treat. This study investigates absorbable cements loaded with a broad-spectrum antibiotic combination as an effective preventive strategy to combat P acnes biofilms. P acnes biofilm formation on an unloaded synthetic calcium sulfate (CaSO4) bone void filler cement bead was evaluated by scanning electron microscopy over a period of 14 days. Beads loaded with tobramycin alone or vancomycin alone (as comparative controls) and beads loaded with a vancomycin-tobramycin dual treatment were assessed for their ability to eradicate planktonic P acnes, prevent biofilm formation, and eradicate preformed biofilms using a combination of viable-cell counts, confocal microscopy, and scanning electron microscopy. P acnes surface colonization and biofilm formation on unloaded CaSO4 beads was slow. Beads loaded with antibiotics were able to kill planktonic cultures of 106 colony-forming units/mL, prevent bacterial colonization, and significantly reduce biofilm formation over periods of weeks. Complete eradication of established biofilms was achieved with a contact time of 1 week. This study demonstrates that antibiotic-loaded CaSO4 beads may represent an effective antibacterial and antibiofilm strategy to combat prosthetic infections in which P acnes is involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.