Abstract

In order to minimize the oxidative degradation of SBR at high temperature, the nano-dispersed clay layers were introduced by using the SBR/clay (100/80) nanocompound to prepare SBR/clay/carbon black (CB) nanocomposites, then the effects of nano-clay on the properties of SBR nanocomposites are investigated. The clay layers and CB are uniformly dispersed in the SBR matrix at nano-scale. The mechanical properties of the SBR/clay/CB nanocomposites mostly decrease with the increase of clay loading, however, with the increase of clay loading, the change rate of the mechanical properties of the nanocomposites decreases and the aging coefficient of the nanocomposites rises, and the length and depth of the cracks of the aged nanocomposites after bending decrease, which means that the clay layers can provide the nanocomposites excellent thermal aging resistance and heat resistance. The experiment of aging with air and without air proved the importance of oxygen during rubber aging process. The FTIR spectra show the generation of oxygen-containing group on the external surface of the nanocomposites during aging. The DSC results indicate the differences between the internal layer and the external layer of the aged nanocomposites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call