Abstract

Glutamine starvation induces apoptosis in enterocytes; therefore glutamine is important in the maintenance of gut mucosal homeostasis. However, the molecular mechanisms are unknown. The caspase family of proteases constitutes the molecular machinery that drives apoptosis. Caspases are selectively activated in a stimulus-specific and tissue-specific fashion. The aims of this study were to (1) identify specific caspases activated by glutamine starvation and (2) determine whether a general caspase inhibitor blocks glutamine starvation-induced apoptosis in intestinal epithelial cells. Rat intestinal epithelial (RIE-1) cells were deprived of glutamine. Specific caspase activation was measured using fluorogenic substrate assay. Apoptosis was quantified by DNA fragmentation and Hoechst nuclear staining. Glutamine starvation of RIE-1 cells resulted in the time-dependent activation of caspases 3 (10 hours) and 2 (18 hours), and the induction of DNA fragmentation (12 hours). Caspases 1 and 8 remained inactive. ZVAD-fluoromethyl ketone, a general caspase inhibitor, completely blocked glutamine starvation—induced caspase activation, DNA fragmentation, and nuclear condensation. These results indicate that glutamine starvation selectively activates specific caspases, which leads to the induction of apoptosis in RIE-1 cells. Furthermore, inhibition of caspase activity blocked the induction of apoptosis, suggesting that caspases are potential molecular targets to attenuate apoptotic responses in the gut.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.