Abstract

Vascular endothelial cells are the prime target in ischemia reperfusion injury. Growing evidence has shown that one of the main etiologies is considered to be reactive oxygen species (ROS) that induce endothelial-cell death either by necrosis or apoptosis. Cultured porcine endothelial cells were transfected with human copper, zinc-superoxide dismutase (h-Cu, Zn-SOD) to investigate whether these cells can prevent apoptosis from oxidative injury in vitro. The endothelial cells were cultured with SIN-1 (3-morpholinosydnonimine-N-ethylcarbanride) as a donor of peroxinitrite (ONOO(-)). The control cells without the gene transfection developed characteristic apoptotic changes both morphologically and biochemically when they were incubated with SIN-1 of 200 M. However, the cells showed necrosis predominantly when the concentration of SIN-1 was 1,000 M. On the other hand, the cells transfected with h-Cu, Zn-SOD showed significantly less evidence of apoptotic change after exposure to SIN-1. Nitric oxide (NO) did not significantly affect the viability of either the control cells or the transfected cells. One of the potent ROS, peroxinitrite, is considered to play a significant role in ischemia reperfusion injury. SIN-1 can produce peroxinitrite in vitro that induces endothelial-cell damage by apoptosis. This type of cytotoxicity can be successfully prevented by transfection of the h-Cu, Zn-SOD into the cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.