Abstract

Reactive advanced glycation end products (AGEs), known to promote diabetic tissue damage, occur endogenously as well as in heated foods and are orally absorbed. The relative contribution of diet-derived AGEs to diabetic nephropathy (DN) remains unclear. We tested a standard mouse food (AIN-93G) found to be rich in AGEs (H-AGE diet) in parallel with a similar diet that contained six-fold lower AGE content (L-AGE), but equal calories, macronutrients, and micronutrients. Non-obese diabetic mice (NOD) with type 1 diabetes (T1D) and db/db mice with type 2 diabetes (T2D) were randomly assigned to each formula for either 4 or 11 months, during which time renal parameters and AGE levels were assessed. Compared to the progressive DN and short survival seen in NOD mice exposed to long-term H-AGE feeding, L-AGE-fed NOD mice developed minimal glomerular pathology and a modest increase in urinary albumin:creatinine ratio (p<0.005), and a significantly extended survival (p<0.0001), consistent with lower serum (p<0.025) and kidney AGEs (p<0.01). Also, in the 4-month study, and in contrast to the H-AGE-fed mice, L-AGE-fed NOD and db/db mice exhibited low levels of renal cortex TGF beta-1 (p<0.05), laminin B1 mRNA (p<0.01) and alpha 1 IV collagen mRNA (p<0.05) and protein, in concert with reduced serum and kidney AGEs (p<0.05, respectively). Intake of high-level, food-derived AGEs is a major contributor to DN in T1D and T2D mice. Avoidance of dietary AGEs provides sustained protection against DN in mice; providing the rationale for similar studies in human diabetic patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call