Abstract

To elucidate the role of Zn2+-associated glutamate signaling pathway and voltage-dependent outward potassium ion currents in neuronal death induced by hypoxia–ischemia, PC12 cells were exposed to Oxygen–Glucose Deprivation (OGD) solution mimicking the hypoxic–ischemic condition in neuron, and the effect of N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a specific Zn2+ chelating agent on OGD-induced neuronal death was assessed in the present study. The cell survival rate, apoptosis status, potassium channel currents, intracellular free glutamate concentration and GluR2 expression in PC12 cells exposed to OGD in the absence or presence of TPEN for different time were investigated. The results showed that OGD exposure increased apoptosis, reduced the cell viability (P<0.01 at 3h, 6h and 24h, respectively compared to control), changed the voltage-dependent outward potassium ion current (increase at 1h, but decrease at 3h) and decreased the concentration of intracellular glutamate (P<0.05 at 3h and 6h, P<0.01 at 24h respectively compared to control) and GluR2 expression (P<0.05 at 3h, 6h and 24h, respectively compared to control) in PC12 cells. TPEN partially reversed the influence resulted from OGD. These results suggest that OGD-induced cell apoptosis and/or death is mediated by the alteration in glutamate signaling pathway and the voltage-dependent outward potassium ion currents, while TPEN effectively prevent cell apoptosis and/or death under hypoxic–ischemic condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.