Abstract

A double-layered tube consisting of a porous inner tube and a solid outer tube was used to perfuse isotonic saline solution into blood to prevent blood cell adhesion. Polystyrene/poly(styrene-co-butadiene) (PS-SBR) porous tubes were made using a dipping method. Citrated canine blood was circulated for 30 min with the flow rate of 100 ml/min using an in vitro blood circulation setup which makes nonpulsatile blood flow. Blood cell adhesion in the PS/SBR porous tubes decreased with increased saline perfusion rate regardless of changes in variables such as tube porosities, tube materials, and perfusion materials. The relationship between blood cell adhesion and perfusion rate was semi-logarithmic. Blood cell adhesion was relatively high in the more porous tube (65% sugar tube), compared to the less porous tube (55% sugar tube) for an identical saline perfusion rate. The blood cell adhesion in the sulfonated PS/SBR porous tube was less than that in the nonsulfonated (control) PS/SBR porous tube. The blood cell adhesion was also decreased by citrate perfusion. The results of this study indicates that the saline perfusion method can be used to prevent blood cell adhesion in the blood lines of extracorporeal circulation systems (such as hemodialysis and heart-lung machines) if certain technical problems involving the surface roughness can be resolved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.