Abstract

Using G-CSF deficient mice we recently demonstrated neuroprotective properties of endogenous G-CSF after ischemic stroke. The present follow-up study was designed to check, whether specific alterations in ligand binding densities of excitatory glutamate or inhibitory GABAA receptors may participate in this effect. Three groups of female mice were subjected to 45 minutes of MCAO: wildtype, G-CSF deficient and G-CSF deficient mice substituted with G-CSF. Infarct volumes were determined after 24 hours and quantitative in vitro receptor autoradiography was performed using [3H]MK-801, [3H]AMPA and [3H]muscimol for labeling of NMDA, AMPA and GABAA receptors, respectively. Ligand binding densities were analyzed in regions in the ischemic core, peri-infarct areas and corresponding contralateral regions. Infarct volumes did not significantly differ between the experimental groups. Ligand binding densities of NMDA and GABAA receptors were widely in the same range. However, AMPA receptor binding densities in G-CSF deficient mice were substantially enhanced compared to wildtype mice. G-CSF substitution in mice lacking G-CSF largely reversed this effect. Although infarct volumes did not differ 24 hours after ischemia the increase of AMPA receptor binding densities in G-CSF deficient mice may explain the bigger infarcts previously observed at later time-points with the same stroke model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call