Abstract

Formation of air bubbles is a serious obstacle to a successful operation of a long-term microfluidic systems using cell culture. We developed a microscale bubble trap that can be integrated with a microfluidic device to prevent air bubbles from entering the device. It consists of two PDMS (polydimethyldisiloxane) layers, a top layer providing barriers for blocking bubbles and a bottom layer providing alternative fluidic paths. Rather than relying solely on the buoyancy of air bubbles, bubbles are physically trapped and prevented from entering a microfluidic device. Two different modes of a bubble trap were fabricated, an independent module that is connected to the main microfluidic system by tubes, and a bubble trap integrated with a main system. The bubble trap was tested for the efficiency of bubble capture, and for potential effects a bubble trap may have on fluid flow pattern. The bubble trap was able to efficiently trap air bubbles of up to 10 mul volume, and the presence of captured air bubbles did not cause alterations in the flow pattern. The performance of the bubble trap in a long-term cell culture with medium recirculation was examined by culturing a hepatoma cell line in a microfluidic cell culture device. This bubble trap can be useful for enhancing the consistency of microfluidic perfusion cell culture operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call