Abstract

Invasive alien species cause substantial impacts on ecosystem, economy, and public health. Therefore, identifying areas at risk of invasion and establishment is essential for the development and implementation of preventive measures. In this study, we integrated information on species habitat suitability, location of airports and ports, and invasion threat maps to assess global invasion risk under climate change using the cucurbit beetle, Diabrotica speciosa (Germar, 1824), as a model organism. Suitable and optimal habitats for D. speciosa were estimated in several regions beyond its native range and comprised all continents. A decrease in the extent of suitable and optimal habitats for D. speciosa was predicted in different climate change scenarios, resulting in a reduction in invasion risk in most regions. However, regions such as western Europe and isolated areas in southern Asia and Oceania were predicted to face an increase in invasion risk under climate change. Invasion pathways via airports and ports were identified in all continents. Our findings can be used in the development of phytosanitary measures against D. speciosa in high-risk areas. Furthermore, the approach used in this study provides a framework for estimating the global risk of invasion by insect pests and other terrestrial organisms in different climate change scenarios. This information can be used by policy makers to develop preventive measures against species with potential to invade and spread in regions beyond their native range. © 2021 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call