Abstract

The antimicrobial peptide murine β-defensin-14 (mBD14) was found to exert, in addition to its antimicrobial activity, the capacity to induce regulatory T cells as demonstrated in the model of contact hypersensitivity. Because it is induced by ultraviolet radiation, mBD14 may contribute to the antigen-specific immunosuppression by ultraviolet radiation. To prove whether this applies also for other immunologic models and because ultraviolet radiation appears to have beneficial effects on multiple sclerosis, we utilized the model of experimental autoimmune encephalomyelitis. Injection of mBD14 into mice before immunization with myelin oligodendrocyte glycoprotein caused amelioration of the disease with less central nervous system inflammation and decreased levels of proinflammatory cytokines and cytotoxic T cells. The beneficial effect was due to Foxp3(+) regulatory T cells because it was lost on in vivo depletion of regulatory T cells. mBD14, however, also acts in a therapeutic setting, because injection of mBD14 into mice with clinical features of experimental autoimmune encephalomyelitis reduced the clinical score significantly. Human β-defensin-3, the human orthologue of mBD14, induced in vitro regulatory T cell-specific markers in CD4(+)CD25(-) T cells, shifting these nonregulatory cells into a regulatory phenotype with suppressive features. Thus, defensins may represent candidates worth being further pursued for the therapy of multiple sclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call