Abstract

Maintaining positive pressure indoors with a mechanical ventilation system is a popular control method for preventing the entry of outdoor airborne particles. This paper analyzes the factors which affect the satisfied superfluous airflow rates of positive pressure control. Through modeling a large amount of cases with a validated model, the factors, e.g. temperature difference, outdoor wind velocity, effective air leakage gaps in the envelopes, the area of the air leakage and the room, were analyzed. Based on the theoretical model, a correlating equation to calculate the satisfied superfluous airflow rate was established by multiple full quadratic regressions. The correlating equation is simple for engineers or designers to use to determine the satisfied superfluous airflow rate. This paper also aims to find which method, pressure control or indoor air cleaning, costs less to prevent the same amount of outdoor-originated particles from entering indoor environments. Generally speaking, indoor air cleaning control method requires less supply airflow rate than positive pressure control method for reducing the concentration of indoor particles with outdoor origin. An exception for this is a situation with a very low indoor/outdoor particle concentration ( I/O ratio) requirement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.