Abstract

Tianjin, a coastal metropolis in north China, has grappled with land subsidence for nearly a century. Yet, emerging evidence suggests a notable decrease in subsidence rates across Tianjin since 2019. This trend is primarily attributed to the importation of surface water from the Yangtze River system via the South-to-North Water Diversion Project, initiated in December 2014. Utilizing Sentinel-1A Interferometric Synthetic Aperture Radar (InSAR) data (2014-2023), this study reveals that one-third of the Tianjin plain has either halted subsidence or experienced land rebound. As a result, the deep aquifer system (~-200 to -450 m) beneath one third of the Tianjin plain has completed a consolidation cycle, leading to the establishment of new, locally specific preconsolidation heads. The identification of the newly established preconsolidation head seeks to answer a crucial question: How can we prevent the reoccurrence of subsidence in areas where it has already ceased? In essence, subsidence will stop when the local hydraulic head elevates to the new preconsolidation head (NPCH), and permanent subsidence will not be reinitiated as long as hydraulic head remains above the NPCH. The difference of the depth between current hydraulic head and the NPCH defines the safe pumping buffer (SPB). This study outlines detailed methods for identifying the NPCHs in the deep aquifer system from long-term InSAR and groundwater-level datasets. Determining NPCHs and ascertaining SPBs are crucial for estimating how much groundwater can be safely extracted without inducing permanent subsidence, and for developing sustainable strategies for long-term groundwater management and conservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call