Abstract
Background Progress in peptide immunotherapy for the treatment of autoimmune diseases has been hampered by reports of anaphylactic reactions in both mice and human subjects. Fatal anaphylaxis in nonobese diabetic (NOD) mice has been described after repeated subcutaneous insulin peptide B:9-23 immunizations. On the basis of observations that rapid systemic delivery of peptide to a sensitized mouse (eg, intravenous delivery) increases the anaphylactic response, it was hypothesized that slowing down the absorption of the peptide would prevent anaphylaxis. Objectives We sought to prevent anaphylaxis from B:9-23 peptide by altering the isoelectric point (pI) to neutral, thereby decreasing solubility and rate of absorption after subcutaneous injection. Methods B:9-23 peptide was modified by the addition of 2 arginine (RR) amino acids to the C-terminus to create B:9-23RR, thereby increasing the pI from 5.4 to 7.0. Both native and modified B:9-23 peptide were tested for the ability to induce anaphylaxis in a NOD mouse model of self-peptide anaphylaxis. Results This modification resulted in a peptide vaccine with decreased solubility when administered subcutaneously at a neutral pH. B:9-23RR significantly protected NOD mice from peptide-induced anaphylaxis compared with B:9-23 peptide. Furthermore, B:9-23RR peptide retains its ability to induce insulin autoantibodies and prevent diabetes in NOD mice. Conclusion The modification of the pI of a peptide vaccine might be a generalizable method to prevent anaphylaxis without changing the immunologic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.