Abstract

Variational autoencoders (VAEs) often suffer from posterior collapse, which is a phenomenon in which the learned latent space becomes uninformative. This is often related to the hyperparameter resembling the data variance. It can be shown that an inappropriate choice of this hyperparameter causes the oversmoothness in the linearly approximated case and can be empirically verified for the general cases. Moreover, determining such appropriate choice becomes infeasible if the data variance is non-uniform or conditional. Therefore, we propose VAE extensions with generalized parameterizations of the data variance and incorporate maximum likelihood estimation into the objective function to adaptively regularize the decoder smoothness. The images generated from proposed VAE extensions show improved Fréchet inception distance (FID) on MNIST and CelebA datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.