Abstract

Staphylococcus aureus pneumonia is associated with high mortality irrespective of antibiotic susceptibility. Both MRSA and MSSA strains produce powerful cytotoxins: alpha-hemolysin(Hla) and up to five leukocidins – LukSF-PV, HlgAB, HlgCB, LukED and LukGH (LukAB) – to evade host innate defense mechanisms. Neutralizing cytotoxins has been shown to provide survival benefit in rabbit S. aureus pneumonia models. We studied the mechanisms of protection of ASN100, a combination of two human monoclonal antibodies (mAbs), ASN-1 and ASN-2, that together neutralize Hla and the five leukocidins, in rabbit MRSA and MSSA pneumonia models. Upon prophylactic passive immunization, ASN100 displayed dose-dependent increase in survival and was fully protective against all S. aureus strains tested at 5 or 20 mg/kg doses. Macroscopic and microscopic lung pathology, edema rate, and bacterial burden were evaluated 12 hours post infection and reduced by ASN100. Pharmacokinetic analysis of ASN100 in bronchoalveolar-lavage fluid from uninfected animals detected efficient penetration to lung epithelial lining fluid reaching peak levels between 24 and 48 hours post dosing that were comparable to the mAb concentration measured in serum. These data confirm that the ASN100 mAbs neutralize the powerful cytotoxins of S. aureus in the lung and prevent damage to the mucosal barrier and innate immune cells.

Highlights

  • Staphylococcus aureus pneumonia is associated with high mortality irrespective of antibiotic susceptibility

  • S. aureus pneumonia is a severe acute infection characterized by the development of marked lung inflammation and edema

  • It is associated with high mortality in hospitalized patients, especially those who receive mechanical ventilation and in community setting following viral infections when it can appear in fulminant form

Read more

Summary

Introduction

Staphylococcus aureus pneumonia is associated with high mortality irrespective of antibiotic susceptibility Both MRSA and MSSA strains produce powerful cytotoxins: alpha-hemolysin(Hla) and up to five leukocidins – LukSF-PV, HlgAB, HlgCB, LukED and LukGH (LukAB) – to evade host innate defense mechanisms. Mutant S. aureus strains lacking lukSF-PV did not show an altered virulence phenotype in rodents or non-human primates[6,7,8,9,10], while greatly reduced virulence was observed in rabbit pneumonia models[11]. This had been enigmatic until it was revealed that phagocytes from mice and cynomolgus monkeys are resistant to LukSF-PV, while human and rabbit phagocytes are highly sensitive to this leukocidin[12,13,14]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.