Abstract

The increasing trend of embedding positioning capabilities (for example, GPS) in mobile devices facilitates the widespread use of location-based services. For such applications to succeed, privacy and confidentiality are essential. Existing privacy-enhancing techniques rely on encryption to safeguard communication channels, and on pseudonyms to protect user identities. Nevertheless, the query contents may disclose the physical location of the user. In this paper, we present a framework for preventing location-based identity inference of users who issue spatial queries to location-based services. We propose transformations based on the well-established K-anonymity concept to compute exact answers for range and nearest neighbor search, without revealing the query source. Our methods optimize the entire process of anonymizing the requests and processing the transformed spatial queries. Extensive experimental studies suggest that the proposed techniques are applicable to real-life scenarios with numerous mobile users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.