Abstract

The paper presents a grammar for anisotropic two-dimensional mesh adaptation in hp-adaptive Finite Element Method with rectangular elements. Expressing mesh transformations as grammar productions is useful for concurrency analysis thanks to exhibiting the partial causality order (Lamport relationship) between atomic operations. It occurs that a straightforward approach to modeling this process via grammar productions leads to potential deadlock in h-adaptation of the mesh. This fact is shown on a Petri net model of an exemplary adaptation. Therefore auxiliary productions are added to the grammar in order to ensure that any sequence of productions allowed by the grammar does not lead to a deadlock state. The fact that the enhanced grammar is deadlock-free is proven via a corresponding Petri net model. The proof has been performed by means of reachability graph construction and analysis. The paper is concluded with numerical simulations of magnetolluric measurements where the deadlock problem occurred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.