Abstract

Given the ever-increasing prevalence of type 2 diabetes and obesity, the pressure on global healthcare is expected to be colossal, especially in terms of blindness. Electroretinogram (ERG) has long been perceived as a first-use technique for diagnosing eye diseases, and some studies suggested its use for preventable risk factors of type 2 diabetes and thereby diabetic retinopathy (DR). Here, we show that in a non-evoked mode, ERG signals contain spontaneous oscillations that predict disease cases in rodent models of obesity and in people with overweight, obesity, and metabolic syndrome but not yet diabetes, using one single random forest-based model. Classification performance was both internally and externally validated, and correlation analysis showed that the spontaneous oscillations of the non-evoked ERG are altered before oscillatory potentials, which are the current gold-standard for early DR. Principal component and discriminant analysis suggested that the slow frequency (0.4-0.7 Hz) components are the main discriminators for our predictive model. In addition, we established that the optimal conditions to record these informative signals, are 5-minute duration recordings under daylight conditions, using any ERG sensors, including ones working with portative, non-mydriatic devices. Our study provides an early warning system with promising applications for prevention, monitoring and even the development of new therapies against type 2 diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.