Abstract

By means of first-principles calculations based on the density-functional theory, we investigate the vacancy trappings prevent hydrogen damage in two dimension α-Cr2O3/α-Fe2O3 (0 0 0 1) interface structure. Our calculations show that H atoms prefer to occupy the unoccupied O atoms octahedral interstitial site (Osite) in the center of the interface structure without vacancy defect, weakening the cleavage strength of Fe and O atoms and decreasing the work function and stability of interface structure. To prevent hydrogen damage in this interface structure, we model three Fe, Cr and O vacancy defects in this interface structure, respectively. Fe and Cr vacancy defects with lower H binding energy and higher work function, are better hydrogen trappings compared to O vacancy. These results confirm the Fe and Cr vacancy defects are effective hydrogen trappings to prevent hydrogen damage for passive film of steel, which has significant practical implications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call