Abstract

BackgroundThe seeding of scaffolds with the stromal vascular fraction (SVF) of adipose tissue is a common prevascularization strategy in tissue engineering. Alternatively, adipose tissue-derived microvascular fragments (ad-MVF) may serve as vascularization units. In contrast to SVF single cells, they represent a mixture of intact arteriolar, capillary and venular vessel segments. Therefore, we herein hypothesized that the ad-MVF-based prevascularization of scaffolds is superior to the conventional SVF single cells-based approach.ResultsSVF single cells and ad-MVF were enzymatically isolated from epididymal fat pads of green fluorescent protein (GFP)+ donor mice to assess their viability and cellular composition using fluorescence microscopy and flow cytometry. Moreover, collagen-glycosaminoglycan matrices (Integra®) were seeded with identical amounts of the isolates and implanted into full-thickness skin defects within dorsal skinfold chambers of GFP− recipient mice for the intravital fluorescent microscopic, histological and immunohistochemical analysis of implant vascularization and incorporation throughout an observation period of 2 weeks. Non-seeded matrices served as controls. While both isolates contained a comparable fraction of endothelial cells, perivascular cells, adipocytes and stem cells, ad-MVF exhibited a significantly higher viability. After in vivo implantation, the vascularization of ad-MVF-seeded scaffolds was improved when compared to SVF-seeded ones, as indicated by a significantly higher functional microvessel density. This was associated with an enhanced cellular infiltration, collagen content and density of CD31+/GFP+ microvessels particularly in the center of the implants, demonstrating a better incorporation into the surrounding host tissue. In contrast, non-seeded matrices exhibited a poor vascularization, incorporation and epithelialization over time.ConclusionsThe present study demonstrates that ad-MVF are highly potent vascularization units that markedly accelerate and improve scaffold vascularization when compared to the SVF.

Highlights

  • The seeding of scaffolds with the stromal vascular fraction (SVF) of adipose tissue is a common prevascularization strategy in tissue engineering

  • Cellular composition and activity of SVF single cells and adipose tissue-derived microvascular fragments (ad-MVF) SVF single cells and ad-MVF were isolated from the bilateral epididymal fat pads of transgenic green fluorescent protein (GFP)+ C57BL/6 mice (Fig. 1a-c)

  • Additional flow cytometric analyses showed a comparable cellular composition of SVF single cells and ad-MVF (Table 1). They contained a mixture of CD31+ endothelial cells, α-smooth muscle actin (SMA)+ perivascular cells, adipocyte-specific adhesion molecule (ASAM)+ adipocytes as well as cells positive for the stromal/stem cell surface markers CD29, CD90 and CD117 (Table 1)

Read more

Summary

Introduction

The seeding of scaffolds with the stromal vascular fraction (SVF) of adipose tissue is a common prevascularization strategy in tissue engineering. Blood vessels do consist of one specific cell type but exhibit a complex composition with an inner endothelial lining and surrounding vessel wall-stabilizing cell layers Taking this into account, the stromal vascular fraction (SVF) of adipose tissue is frequently used to induce the formation of microvascular networks [10, 14]. Digestion of adipose tissue for 45–60 min exclusively results in SVF single cells [19, 20], whereas a shorter digestion time of only 10 min provides a mixture of single cells and ad-MVF [21] These ad-MVF still represent intact vessel segments and, exhibit the unique feature of rapidly reassembling into new microvascular networks after transplantation [18]. We hypothesized that the ad-MVF-based prevascularization of scaffolds is superior to the conventional SVF-based approach

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.