Abstract
Observational epidemiological studies often include prevalent cases recruited at various times past diagnosis. This left truncation can be dealt with in non-parametric (Kaplan–Meier) and semi-parametric (Cox) time-to-event analyses, theoretically generating an unbiased hazard ratio (HR) when the proportional hazards (PH) assumption holds. However, concern remains that inclusion of prevalent cases in survival analysis results inevitably in HR bias. We used data on three well-established breast cancer prognosticators – clinical stage, histopathological grade and oestrogen receptor (ER) status – from the SEARCH study, a population-based study including 4470 invasive breast cancer cases (incident and prevalent), to evaluate empirically the effectiveness of allowing for left truncation in limiting HR bias. We found that HRs of prognostic factors changed over time and used extended Cox models incorporating time-dependent covariates. When comparing Cox models restricted to subjects ascertained within six months of diagnosis (incident cases) to models based on the full data set allowing for left truncation, we found no difference in parameter estimates (P=0.90, 0.32 and 0.95, for stage, grade and ER status respectively). Our results show that use of prevalent cases in an observational epidemiological study of breast cancer does not bias the HR in a left truncation Cox survival analysis, provided the PH assumption holds true.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.