Abstract

Classical results in the theory of monotone semiflows give sufficient conditions for the generic solution to converge toward an equilibrium or towards the set of equilibria (quasiconvergence). In this paper, we provide new formulations of these results in terms of the measure-theoretic notion of prevalence. For monotone reaction-diffusion systems with Neumann boundary conditions on convex domains, we show that the set of continuous initial data corresponding to solutions that converge to a spatially homogeneous equilibrium is prevalent. We also extend a previous generic convergence result to allow its use on Sobolev spaces. Careful attention is given to the measurability of the various sets involved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call