Abstract

Land and ship surface synoptic reports of nondrizzle intensity precipitation in progress were matched with 3596 nearly coincident full disk 4-km resolution infrared images from the GMS-5 geostationary satellite, covering 18 calendar months, in order to derive regional and seasonal estimates of the contribution of relatively warm-topped clouds to the total time in precipitation. Minimum infrared temperatures of 273 K or warmer were found to be associated with 20%–40% of the surface reports of nondrizzle precipitation over much of the ocean east of Australia during all four seasons. Similar or even larger fractions were found during December–March over parts of Indochina, southern China, and the adjacent South China Sea. Although reports of precipitation of moderate or heavy intensity were found to be associated more often with colder cloud tops, there were still regions for which a substantial fraction of these reports were associated with relatively warm clouds. These results suggest at least a potential for significant regional and seasonal biases in satellite infrared or passive microwave scattering based estimates of global precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call