Abstract

BackgroundNeoehrlichia mikurensis s an emerging and vector-borne zoonosis: The first human disease cases were reported in 2010. Limited information is available about the prevalence and distribution of Neoehrlichia mikurensis in Europe, its natural life cycle and reservoir hosts. An Ehrlichia-like schotti variant has been described in questing Ixodes ricinus ticks, which could be identical to Neoehrlichia mikurensis.MethodsThree genetic markers, 16S rDNA, gltA and GroEL, of Ehrlichia schotti-positive tick lysates were amplified, sequenced and compared to sequences from Neoehrlichia mikurensis. Based on these DNA sequences, a multiplex real-time PCR was developed to specifically detect Neoehrlichia mikurensis in combination with Anaplasma phagocytophilum in tick lysates. Various tick species from different life-stages, particularly Ixodes ricinus nymphs, were collected from the vegetation or wildlife. Tick lysates and DNA derived from organs of wild rodents were tested by PCR-based methods for the presence of Neoehrlichia mikurensis. Prevalence of Neoehrlichia mikurensis was calculated together with confidence intervals using Fisher's exact test.ResultsThe three genetic markers of Ehrlichia schotti-positive field isolates were similar or identical to Neoehrlichia mikurensis. Neoehrlichia mikurensis was found to be ubiquitously spread in the Netherlands and Belgium, but was not detected in the 401 tick samples from the UK. Neoehrlichia mikurensis was found in nymphs and adult Ixodes ricinus ticks, but neither in their larvae, nor in any other tick species tested. Neoehrlichia mikurensis was detected in diverse organs of some rodent species. Engorging ticks from red deer, European mouflon, wild boar and sheep were found positive for Neoehrlichia mikurensis.ConclusionsEhrlichia schotti is similar, if not identical, to Neoehrlichia mikurensis. Neoehrlichia mikurensis is present in questing Ixodes ricinus ticks throughout the Netherlands and Belgium. We propose that Ixodes ricinus can transstadially, but not transovarially, transmit this microorganism, and that different rodent species may act as reservoir hosts. These data further imply that wildlife and humans are frequently exposed to Neoehrlichia mikurensis-infected ticks through tick bites. Future studies should aim to investigate to what extent Neoehrlichia mikurensis poses a risk to public health.

Highlights

  • Neoehrlichia mikurensis s an emerging and vector-borne zoonosis: The first human disease cases were reported in 2010

  • Comparison of Ehrlichia schotti with N. mikurensis Twenty-three tick lysates that were previously tested positive for the presence of Ehrlichia schotti by Polymerase chain reaction (PCR) and Reverse Line Blotting [5,9,27] were amplified by PCR on the three loci 16S rDNA, gltA and GroEL using primers specific for N. mikurensis (Table 2)

  • Phylogenetic analyses of the gltA and GroEL sequences showed that the Ehrlichia schotti clustered with N. mikurensis isolates, but not with A. phagocytophilum or any of the Ehrlichia species present in Genbank (Figure 1)

Read more

Summary

Introduction

Neoehrlichia mikurensis s an emerging and vector-borne zoonosis: The first human disease cases were reported in 2010. An Ehrlichia-like schotti variant has been described in questing Ixodes ricinus ticks, which could be identical to Neoehrlichia mikurensis. Human ehrlichiosis and anaplasmosis are two closely related diseases caused by various members of the genera Ehrlichia and Anaplasma. The etiologic agent of human monocytotropic ehrlichiosis (HME), is an emerging zoonosis that causes clinical manifestations ranging from a mild febrile illness to a fulminant disease characterized by multi-organ system failure [3]. Anaplasma phagocytophilum causes human granulocytotropic anaplasmosis (HGA), previously known as human granulocytotropic ehrlichiosis [3]. Despite the presence of Anaplasma phagocytophilum in questing Ixodes ricinus ticks in the Netherlands [4], only one human case has been reported [5]. The incidence of these tick-borne diseases and the associated public health risks remain largely unknown

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call