Abstract
OBJECTIVESingle nucleotide polymorphisms (SNPs) in intron 1 of fat mass– and obesity-associated gene (FTO) are strongly associated with human adiposity, whereas Fto−/− mice are lean and Fto+/− mice are resistant to diet-induced obesity. We aimed to determine whether FTO mutations are disproportionately represented in lean or obese humans and to use these mutations to understand structure-function relationships within FTO.RESEARCH DESIGN AND METHODSWe sequenced all coding exons of FTO in 1,433 severely obese and 1,433 lean individuals. We studied the enzymatic activity of selected nonsynonymous variants.RESULTSWe identified 33 heterozygous nonsynonymous variants in lean (2.3%) and 35 in obese (2.4%) individuals, with 8 mutations unique to the obese and 11 unique to the lean. Two novel mutations replace absolutely conserved residues: R322Q in the catalytic domain and R96H in the predicted substrate recognition lid. R322Q was unable to catalyze the conversion of 2-oxoglutarate to succinate in the presence or absence of 3-methylthymidine. R96H retained some basal activity, which was not enhanced by 3-methylthymidine. However, both were found in lean and obese individuals.CONCLUSIONSHeterozygous, loss-of-function mutations in FTO exist but are found in both lean and obese subjects. Although intron 1 SNPs are unequivocally associated with obesity in multiple populations and murine studies strongly suggest that FTO has a role in energy balance, it appears that loss of one functional copy of FTO in humans is compatible with being either lean or obese. Functional analyses of FTO mutations have given novel insights into structure-function relationships in this enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.