Abstract

BackgroundThe recent emergence and spread of artemisinin resistance in the Greater Mekong Subregion poses a great threat to malaria control and elimination. A K13-propeller gene (K13), PF3D7_1343700, has been associated lately with artemisinin resistance both in vitro and in vivo. This study aimed to investigate the K13 polymorphisms in Plasmodium falciparum parasites from the China-Myanmar border area where artemisinin use has the longest history.MethodsA total of 180 archived P. falciparum isolates containing 191 parasite clones, mainly collected in 2007–2012 from the China-Myanmar area, were used to obtain the full-length K13 gene sequences.ResultsSeventeen point mutations were identified in 46.1% (88/191) parasite clones, of which seven were new. The F446I mutation predominated in 27.2% of the parasite clones. The C580Y mutation that is correlated with artemisinin resistance was detected at a low frequency of 1.6%. Collectively, 43.1% of the parasite clones contained point mutations in the kelch domain of the K13 gene. Moreover, there was a trend of increase in the frequency of parasites carrying kelch domain mutations through the years of sample collection. In addition, a microsatellite variation in the N-terminus of the K13 protein was found to have reached a high frequency (69.1%).ConclusionsThis study documented the presence of mutations in the K13 gene in parasite populations from the China-Myanmar border. Mutations present in the kelch domain have become prevalent (>40%). A predominant mutation F446I and a prevalent microsatellite variation in the N-terminus were identified, but their importance in artemisinin resistance remains to be elucidated.

Highlights

  • The recent emergence and spread of artemisinin resistance in the Greater Mekong Subregion poses a great threat to malaria control and elimination

  • The full-length K13-propeller genes were sequenced from a total of 180 clinical isolates collected from malaria patients along the China-Myanmar border

  • K13 mutations associated with ART resistance were mainly detected in areas of the Greater Mekong Subregion (GMS) [5,9,10,11], with C580Y being the predominant

Read more

Summary

Introduction

The recent emergence and spread of artemisinin resistance in the Greater Mekong Subregion poses a great threat to malaria control and elimination. A K13-propeller gene (K13), PF3D7_1343700, has been associated lately with artemisinin resistance both in vitro and in vivo. Parasite resistance to anti-malarials remains an ever-present obstacle to eliminate malaria. ART resistance is manifested clinically as delayed parasite clearance half-life (>5 hours) in vivo [4,5]. An in vitro ring-stage survival assay (RSA0-3h), which measures the percentage of early ring-stage parasites (0–3 hrs postinvasion of red blood cells (RBCs)) that survive exposure to a pharmacologically relevant concentration of dihydroartemisinin, has been developed to reflect this ART resistance phenotype [6]. Recent work has associated ART resistance with mutations in the propeller domain of a

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call