Abstract

BackgroundOver the last few years, awareness and detection rates of hypopituitarism following traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) has steadily increased. Moreover, recent studies have found that a clinically relevant number of patients develop pituitary insufficiency after intracranial operations and radiation treatment for non-pituitary tumors. But, in a substantial portion of more than 40%, the hypopituitarism already exists before surgery. We sought to determine the frequency, pattern, and severity of endocrine disturbances using basal and advanced dynamic pituitary testing following non-pituitary intracranial procedures.Methods51 patients (29 women, 22 men) with a mean age of 55 years (range of 20 to 75 years) underwent prospective evaluation of basal parameters and pituitary function testing (combined growth hormone releasing hormone (GHRH)/arginine test, insulin tolerance test (ITT), low dose adrenocorticotropic hormone (ACTH) test), performed 5 to 168 months (median 47.2 months) after intracranial operation (4 patients had additional radiation and 2 patients received additional radiation combined with chemotherapy).ResultsWe discovered an overall rate of hypopituitarism with distinct magnitude in 64.7% (solitary in 45.1%, multiple in 19.6%, complete in 0%). Adrenocorticotropic hormone insufficiency was found in 51.0% (partial in 41.2%, complete in 9.8%) and growth hormone deficiency (GHD) occurred in 31.4% (partial in 25.5%, severe in 5.9%). Thyrotropic hormone deficiency was not identified. The frequency of hypogonadism was 9.1% in men. Pituitary deficits were associated with operations both in close proximity to the sella turcica and more distant regions (p = 0.91). Age (p = 0.76) and gender (p = 0.24) did not significantly differ across patients with versus those without hormonal deficiencies. Groups did not significantly differ across pathology and operation type (p = 0.07).ConclusionHypopituitarism occurs more frequently than expected in patients who have undergone neurosurgical intracranial procedures for conditions other then pituitary tumors or may already exists in a neurosurgical population before surgery. Pituitary function testing and adequate substitution may be warranted for neurosurgical patients with intracranial pathologies at least if unexplained symptoms like fatigue, weakness, altered mental activity, and decreased exercise tolerance are present.

Highlights

  • Over the last few years, awareness and detection rates of hypopituitarism following traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) has steadily increased

  • 51 consecutive patients were eligible for enrollment having undergone a neurosurgical intracranial procedure for something other than a pituitary tumor (29 female, 22 male, mean age 55 years, age range 20 to 75 years), (BMI mean 27.9; range of 21 to 37)

  • The diagnosis of adrenocorticotrophic deficiency in all patients is provided by dynamic testing. 31.4% of patients had a growth hormone deficiency (GHD), whereas a thyrotrophic deficiency was not observed

Read more

Summary

Introduction

Over the last few years, awareness and detection rates of hypopituitarism following traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) has steadily increased. Recent studies have found that a clinically relevant number of patients develop pituitary insufficiency after intracranial operations and radiation treatment for non-pituitary tumors. Earlier postmortem studies identified anterior gland necrosis in up to one third of fatal head injuries and several case reports of posttraumatic hypopituitarism exist [3,4]. Subarachnoid hemorrhage (SAH) has been linked with neuroendocrine dysfunction in a substantial number of patients, possibly indicating the need for endocrinology follow-up evaluations in these patients as well [11,12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call