Abstract

For a better understanding of the distribution of depth-dependent electrochemically active bacteria at in the anode zone, a customized system in a microbial fuel cell (MFC) packed with granular activated carbon (GAC) was developed and subsequently optimized via electrochemical tests. The constructed MFC system was sequentially operated using two types of matrice solutions: artificially controlled compositions (i.e., artificial wastewater, AW) and solutions obtained directly from actual sewage-treating municipal plants (i.e., municipal wastewater, MW). Notably, significant difference(s) of system efficiencies between AW or MW matrices were observed via performance tests, in that the electricity production capacity under MW matrices is < 25% that of the AW matrices. Interestingly, species of Escherichia coli (E. coli) sampled from the GAC bed (P1: deeper region in GAC bed, P2: shallow region of GAC near electrolytes) exhibited an average relative abundance of 75 to 90% in AW and a relative abundance of approximately 10% in MW, while a lower relative abundance of E. coli was found in both the AW and MW anolyte samples (L). Moreover, similar bacterial communities were identified in samples P1 and P2 for both the AW and MW solutions, indicating a comparable distribution of bacterial communities over the anode area. These results provide new insights into E. coli contribution in power production for the GAC-packed MFC systems (i.e., despite the low contents of Geobacter (> 8%) and Shewanella (> 1%)) for future applications in sustainable energy research. KEY POINTS: • A microbial community analysis for depth-dependence in biofilm was developed. • The system was operated with two matrices; electrochemical performance was assessed. • E. coli spp. was distinctly found in anode zone layers composed of activated carbon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call