Abstract

In order to assess the health risk associated with a given source of fecal contamination using bacterial source tracking (BST), it is important to know the occurrence of potential pathogens as a function of host. Escherichia coli isolates (n=593) from the feces of diverse animals were screened for various virulence genes: stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae and EAF (enteropathogenic E. coli [EPEC]), STh, STp, and LT (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). Eleven hosts were positive for only the eae (10.11%) gene, representing atypical EPEC, while two hosts were positive for both eae and EAF (1.3%), representing typical EPEC. stx1, stx2, or both stx1 and stx2 were present in 1 (0.1%,) 10 (5.56%), and 2 (1.51%) hosts, respectively, and confirmed as non-O157 by using a E. coli O157 rfb (rfbO157) TaqMan assay. STh and STp were carried by 2 hosts (2.33%) and 1 host (0.33%), respectively, while none of the hosts were positive for LT and ipaH. The repetitive element palindromic PCR (rep-PCR) fingerprint analysis identified 221 unique fingerprints with a Shannon diversity index of 2.67. Multivariate analysis of variance revealed that majority of the isolates clustered according to the year of sampling. The higher prevalence of atypical EPEC and non-O157 STEC observed in different animal hosts indicates that they can be a reservoir of these pathogens with the potential to contaminate surface water and impact human health. Therefore, we suggest that E. coli from these sources must be included while constructing known source fingerprint libraries for tracking purposes. However, the observed genetic diversity and temporal variation need to be considered since these factors can influence the accuracy of BST results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call