Abstract

Background:Extended spectrum beta lactamases (ESBLs) are an important cause of transferable multidrug resistance (MDR) in gram-negative bacteria. The most described ESBL genes are generally found within integron-like structures as mobile genetic elements. The aim of this study was to identify the accompanying of class 1 integrons and ESBLs in the MDR E. coli isolates. Methods:Susceptibility to antimicrobial agents was determined for 33 E. coli strains by the disk diffusion method. Double-disk synergy test was applied for screening ESBL. To identify the strains carrying integrons, the conserved regions of integron-encoded integrase gene intI1 were amplified. For detection of gene cassettes, 5′CS and 3′CS primers were used. Results:All E. coli isolates were identified as multi-drug resistant. More than 50% of the isolates were resistant to tetracycline, cephalothin, cefuroxime, amoxicillin-clavulanic acid, and third generation cephalosporines. Nearly all of the isolates displayed sensitivity to piperacillin. There was a significant correlation between production of ESBL and resistance to all antibiotics except for ciprofloxacin and piperacillin (P < 0.01). Thirty two MDR strains (97%) included class 1 integron, and some isolates that included integrons were similar in the size of gene cassettes. The isolates were different in the resistance profiles; however, some others had similar resistance profiles. Of eight ESBL positive isolates, seven (87.5%) carried class 1 integrons. Conclusion:Class 1 integrons were frequent in MDR and also ESBL-producing E. coli isolates. High prevalence of class 1 integrons confirms that integron-mediated antimicrobial gene cassettes are important in E. coli resistance profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.