Abstract

AimAlthough carbapenem is the last-resort drug for treating drug-resistant Gram-negative bacterial infections, prevalence of carbapenem-resistant bacteria has substantially increased worldwide owing to irrational use of antibiotics particularly in developing countries like Nepal. Therefore, this study was aimed to determine the prevalence of carbapenemase-producing K. pneumoniae and to detect the carbapenemase genes (blaNDM-2 and blaOXA-48) in at a tertiary care hospital in Nepal.Materials and methodsA hospital-based cross-sectional study was carried out from June 2018 to January 2019 at the Microbiology Laboratory of Annapurna Neurological Institute and Allied Sciences, Kathmandu, Nepal. Different clinical samples were collected and cultured in appropriate growth media. Biochemical tests were performed for the identification of K. pneumoniae. Antibiotic susceptibility testing (AST) was performed by the Kirby–Bauer disc diffusion method. The modified Hodge test (MHT) was performed to detect carbapenemase producers. The plasmid was extracted by the modified alkaline hydrolysis method. Carbapenemase-producing K. pneumoniae were further confirmed by detecting blaNDM-2 and blaOXA-48 genes by PCR using specific forward and reverse primers followed by gel electrophoresis.ResultsOut of the total 720 samples, 38.9% (280/720) were culture positive. K. pneumoniae was the most predominant isolate 31.4% (88/280). Of 88 K. pneumoniae isolates, 56.8% (50/88) were multi-drug resistant (MDR), and 51.1% (45/88) were MHT positive. Colistin showed the highest sensitivity (100%; 88/88), followed by tigecycline (86.4%; 76/88). blaNDM-2 and blaOXA-48 genes were detected in 24.4% (11/45) and 15.5% (7/45) of carbapenemase-producing K. pneumoniae isolates, respectively.ConclusionThe rate of MDR and carbapenemase production was high in the K. pneumoniae isolates. Colistin and tigecycline could be the drug of choice for the empirical treatments of MDR and carbapenemase-producing K. pneumoniae. Our study provides a better understanding of antibiotic resistance threat and enables physicians to select the most appropriate antibiotics.

Highlights

  • Klebsiella pneumoniae is an opportunistic Gram-negative bacterium responsible for several of nosocomial infections including urinary tract infections, pneumonia, and septicemia [1]

  • Colistin showed the highest sensitivity (100%; 88/88), followed by tigecycline (86.4%; 76/88). blaNDM-2 and blaOXA-48 genes were detected in 24.4% (11/45) and 15.5% (7/45) of carbapenemase-producing K. pneumoniae isolates, respectively

  • Our study provides a better understanding of antibiotic resistance threat and enables physicians to select the most appropriate antibiotics

Read more

Summary

Introduction

Klebsiella pneumoniae is an opportunistic Gram-negative bacterium responsible for several of nosocomial infections including urinary tract infections, pneumonia, and septicemia [1]. Irrational and widespread use of antimicrobial agents has led to the increase in antimicrobial resistance in these isolates [3] and the multidrug-resistant (MDR) K. pneumoniae isolates have been reported by many workers in Nepal [2, 4, 5]. Such multidrug-resistant K. pneumoniae isolates show a high resistance to a broad spectrum of drugs including beta-lactam antibiotics, fluoroquinolones, and aminoglycosides [6]. The overdependence on carbapenems has led to an undesirable increase in the carbapenem-resistant isolates [8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call