Abstract

Urinary tract infection (UTI) accounts for a significant morbidity and mortality across the world and is a leading cause for antibiotic prescriptions in the community especially in developing countries. Empirical choice of antibiotics for treatment of UTI is often discordant with the drug susceptibility of the etiologic agent. This study aimed to estimate the prevalence of community-acquired UTI caused by antibiotic resistant organisms. This was a cross-sectional study where urine samples were prospectively collected from 4,500 patients at the icddr,b diagnostic clinic in Dhaka, Bangladesh during 2016–2018. Urine samples were analyzed by standard culture method and the isolated bacteria were tested for antibiotic susceptibility by using disc diffusion method and VITEK-2. Descriptive statistics were used to estimate the prevalence of community acquired UTI (CA-UTI) by different age groups, sex, and etiology of infection. Relationship between the etiology of CA-UTI and age and sex of patients was analyzed using binary logistic regression analysis. Seasonal trends in the prevalence of CA-UTI, multi-drug resistant (MDR) pathogens and MDR Escherichia coli were also analyzed. Around 81% of patients were adults (≥18y). Of 3,200 (71%) urine samples with bacterial growth, 920 (29%) had a bacterial count of ≥1.0x105 CFU/ml indicating UTI. Women were more likely to have UTI compared to males (OR: 1.48, CI: 1.24–1.76). E. coli (51.6%) was the predominant causative pathogen followed by Streptococcus spp. (15.7%), Klebsiella spp. (12.1%), Enterococcus spp. (6.4%), Pseudomonas spp. (4.4%), coagulase-negative Staphylococcus spp. (2.0%), and other pathogens (7.8%). Both E. coli and Klebsiella spp. were predominantly resistant to penicillin (85%, 95%, respectively) followed by macrolide (70%, 76%), third-generation cephalosporins (69%, 58%), fluoroquinolones (69%, 53%) and carbapenem (5%, 9%). Around 65% of patients tested positive for multi-drug resistant (MDR) uropathogens. A higher number of male patients tested positive for MDR pathogens compared to the female patients (p = 0.015). Overall, 71% of Gram-negative and 46% of Gram-positive bacteria were MDR. The burden of community-acquired UTI caused by MDR organisms was high among the study population. The findings of the study will guide clinicians to be more selective about their antibiotic choice for empirical treatment of UTI and alleviate misuse/overuse of antibiotics in the community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call