Abstract

BackgroundBats are hosts for a variety of microorganisms, however, little is known about the presence of Chlamydiales and hemotropic mycoplasmas. This study investigated 475 captive and free-living bats from Switzerland, Germany, and Costa Rica for Chlamydiales and hemotropic mycoplasmas by PCR to determine the prevalence and phylogeny of these organisms.ResultsScreening for Chlamydiales resulted in a total prevalence of 31.4%. Positive samples originated from captive and free-living bats from all three countries. Sequencing of 15 samples allowed the detection of two phylogenetically distinct groups. These groups share sequence identities to Chlamydiaceae, and to Chlamydia-like organisms including Rhabdochlamydiaceae and unclassified Chlamydiales from environmental samples, respectively.PCR analysis for the presence of hemotropic mycoplasmas resulted in a total prevalence of 0.7%, comprising free-living bats from Germany and Costa Rica. Phylogenetic analysis revealed three sequences related to other unidentified mycoplasmas found in vampire bats and Chilean bats.ConclusionsBats can harbor Chlamydiales and hemotropic mycoplasmas and the newly described sequences in this study indicate that the diversity of these bacteria in bats is much larger than previously thought. Both, Chlamydiales and hemotropic mycoplasmas are not restricted to certain bat species or countries and captive and free-living bats can be colonized. In conclusion, bats represent another potential host or vector for novel, previously unidentified, Chlamydiales and hemotropic mycoplasmas.

Highlights

  • Bats are hosts for a variety of microorganisms, little is known about the presence of Chlamydiales and hemotropic mycoplasmas

  • Group one contained eight consensus sequences from six free-living bats (F18–0155.54, F18–0155.98, E 148/ 07, E 155/07, E 161/07 and E 179/07) originating from Switzerland and Germany that carry bacteria belonging to the Chlamydiaceae-family according to the classification scheme by Pillonel et al [24] and phylogenetic analysis

  • The best BLASTn hits for consensus sequences obtained from both the 16S-IGF/IGRPCR and the 16S-pan-Polymerase chain reaction (PCR) was Chlamydia pecorum strain B0-Maeda (GenBank accession number AB001775.1) and Chlamydophila pecorum strain Ov/IPA (GenBank accession number D85716.1)

Read more

Summary

Introduction

Bats are hosts for a variety of microorganisms, little is known about the presence of Chlamydiales and hemotropic mycoplasmas. Bats of the order Chiroptera are of increasing interest as potential reservoirs and vectors of pathogens. They possess unique characteristics among mammals, such as the ability to fly. Their extensive mobility, combined with their roost plasticity, nesting behavior and broad food range allows transport of pathogens to many different animal species in various locations [1]. It has been shown that bats are hosts for a multitude of different microorganisms that include viruses, bacteria, parasites and fungi. Several of these infectious agents are common to humans and domestic animals. Knowledge on the natural microbiota of bats is scarce [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call