Abstract

BackgroundBovine mastitis is the most common infectious disease in dairy cattle with major economic implications for the dairy industry worldwide. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from dairy farms is vital not only for animal husbandry but also for public health.MethodsIn this study, the prevalence of AMR in 113 Escherichia coli isolates from cases of bovine clinical mastitis in Canada was investigated. Kirby-Bauer disk diffusion test with 18 antibiotics and microdilution method with 3 heavy metals (copper, zinc, and silver) was performed to determine the antibiotic and heavy-metal susceptibility. Resistant strains were assessed for efflux and ß-lactamase activities besides assessing biofilm formation and hemolysis. Whole-genome sequences for each of the isolates were examined to detect the presence of genes corresponding to the observed AMR and virulence factors.ResultsPhenotypic analysis revealed that 32 isolates were resistant to one or more antibiotics and 107 showed resistance against at least one heavy metal. Quinolones and silver were the most efficient against the tested isolates. Among the AMR isolates, AcrAB-TolC efflux activity and ß-lactamase enzyme activities were detected in 13 and 14 isolates, respectively. All isolates produced biofilm but with different capacities, and 33 isolates showed α-hemolysin activity. A positive correlation (Pearson r = + 0.89) between efflux pump activity and quantity of biofilm was observed. Genes associated with aggregation, adhesion, cyclic di-GMP, quorum sensing were detected in the AMR isolates corroborating phenotype observations.ConclusionsThis investigation showed the prevalence of AMR in E. coli isolates from bovine clinical mastitis. The results also suggest the inadequacy of antimicrobials with a single mode of action to curtail AMR bacteria with multiple mechanisms of resistance and virulence factors. Therefore, it calls for combinatorial therapy for the effective management of AMR infections in dairy farms and combats its potential transmission to the food supply chain through the milk and dairy products.

Highlights

  • Bovine mastitis is the most common infectious disease in dairy cattle with major economic implications for the dairy industry worldwide

  • The frequency of resistance among the tested E. coli isolates was highest towards streptomycin (17.7 %) followed by tetracycline (15.93 %) and ampicillin (11.5 %), whereas less than 10 % resistance was seen towards the remaining antibiotics

  • Unlike other pathogens, intramammary infections caused by E. coli rarely require antibiotic interventions but are reported to cause persistent infection [5]

Read more

Summary

Introduction

Bovine mastitis is the most common infectious disease in dairy cattle with major economic implications for the dairy industry worldwide. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from dairy farms is vital for animal husbandry and for public health. Bovine mastitis is a common and very costly infectious disease that has a high prevalence in the global dairy industry. Indiscriminate use of antimicrobials in farms has been suspected as a major factor in the emergence of antimicrobial resistance (AMR) among pathogenic bacteria. Prevalence of AMR bacteria in IMI is a challenge for clinical management of mastitis and a public health concern is given the possibilities of transfer of AMR bacteria or genetic determinants from animals to humans via the food chain [7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call