Abstract

AbstractResistance to atrazine (a photosystem II [PSII] inhibitor) is prevalent in waterhemp [Amaranthus tuberculatus(Moq.) J. D. Sauer] across the U.S. Midwest. Previous research suggests that target-site mutation or rapid metabolism of atrazine mediated by glutathioneS-transferase (GST) conjugation confers resistance inA. tuberculatusfrom Illinois. The distribution and mechanism of resistance to atrazine inA. tuberculatuspopulations from Nebraska (NE) are unknown. In this research we (1) evaluated the response and frequency of resistance in NEA. tuberculatusto soil-applied PSII (metribuzin and atrazine) and protoporphyrinogen oxidase (sulfentrazone) inhibitors, as well as POST-applied atrazine; and (2) determined the mechanism of atrazine resistance in NEA. tuberculatus. The chloroplasticpsbAgene, coding for a D1 protein (the target site of atrazine) was sequenced in 85 plants representing 27 populations ofA. tuberculatus. Furthermore, 24 plants selected randomly from four atrazine-resistant (AR) populations were used to determine the metabolism of atrazine via GST conjugation. Results from the soil-applied herbicide evaluation suggest that metribuzin (0.56 kg ai ha−1) and sulfentrazone (0.28 kg ai ha−1) were effective onA. tuberculatusmanagement. PRE and POST screenings against atrazine in the greenhouse indicate that atrazine (1.345 kg ai ha−1) was not effective on 39% and 73% of theA. tuberculatuspopulations evaluated (total of 109 and 85 populations, respectively), suggesting the prevalence of atrazine resistance inA. tuberculatusin NE. Sequence analysis of thepsbAgene found no known point mutations conferring atrazine resistance. However, the AR plants conjugated atrazine via GST activity faster than the known atrazine-susceptibleA. tuberculatus. Overall, the outcome of this study demonstrates the predominance of metabolism-based resistance to atrazine inA. tuberculatusfrom NE, which may predispose this species to evolve resistance to other herbicides. The use of integrated management strategies forA. tuberculatusis crucial for the control of this troublesome species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call