Abstract

PurposeTo determine the frequency of different types of spectral domain optical coherence tomography (SD-OCT) scan artifacts and errors in ganglion cell algorithm (GCA) in healthy eyes.MethodsInfrared image, color-coded map and each of the 128 horizontal b-scans acquired in the macular ganglion cell-inner plexiform layer scans using the Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA) macular cube 512 × 128 protocol in 30 healthy normal eyes were evaluated. The frequency and pattern of each artifact was determined. Deviation of the segmentation line was classified into mild (less than 10 microns), moderate (10–50 microns) and severe (more than 50 microns). Each deviation, if present, was noted as upward or downward deviation. Each artifact was further described as per location on the scan and zones in the total scan area.ResultsA total of 1029 (26.8%) out of total 3840 scans had scan errors. The most common scan error was segmentation error (100%), followed by degraded images (6.70%), blink artifacts (0.09%) and out of register artifacts (3.3%). Misidentification of the inner retinal layers was most frequent (62%). Upward Deviation of the segmentation line (47.91%) and severe deviation (40.3%) were more often noted. Artifacts were mostly located in the central scan area (16.8%). The average number of scans with artifacts per eye was 34.3% and was not related to signal strength on Spearman correlation (p = 0.36).ConclusionsThis study reveals that image artifacts and scan errors in SD-OCT GCA analysis are common and frequently involve segmentation errors. These errors may affect inner retinal thickness measurements in a clinically significant manner. Careful review of scans for artifacts is important when using this feature of SD-OCT device.

Highlights

  • Quantitative assessment of the retina has become an important aspect of clinical management

  • Color-coded map and each of the 128 horizontal b-scans acquired in the macular ganglion cell-inner plexiform layer scans using the Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA) macular cube 512 × 128 protocol in 30 healthy normal eyes were evaluated

  • This study reveals that image artifacts and scan errors in spectral domain optical coherence tomography (SD-OCT) ganglion cell algorithm (GCA) analysis are common and frequently involve segmentation errors

Read more

Summary

Introduction

Quantitative assessment of the retina has become an important aspect of clinical management. An abundance of studies have shown that in-vivo quantitative measurement of retinal ganglion cell in the macula area can be an effective and powerful method for the evaluation of glaucomatous damage and progression.[1,2,3,4,5,6,7,8] measurement of the thickness of the macular ganglion cell–inner plexiform layer thickness in various retinal diseases is considered as a marker for retinal neurodegeneration.[9, 10] In addition, it appears to be a better biomarker of structural injury and can precisely measure the GCL+IPL thickness at baseline and assess changes occurring with time.[11]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call