Abstract

Escherichia coli, a prominent waterborne pathogen, causes a variety of gastrointestinal and extraintestinal infections that depend on virulence determinants. To monitor natural aquatic systems for virulence-associated genes of E. coli, multiplex PCR was used in a survey covering 46 major natural water bodies in Bangladesh. DNA was extracted directly from water samples as well as from pre-enriched and enriched cultures during three successive seasons and assessed for E. coli virulotype distribution. From the five virulotypes, genes from the enterotoxigenic (ETEC), enteropathogenic (EPEC), and enterohaemorrhagic (EHEC) virulotypes were detected consistently, but genes from the enteroinvasive (EIEC) and enteroaggregative (EAEC) virulotypes were traced only occasionally. ETEC was the most prevalent virulotype, followed by EPEC. However, EIEC and EAEC virulotypes could not be detected in winter or the rainy season, respectively. Specific regional distribution patterns of different E. coli virulotypes and their temporal fluctuations were identified. These observations may assist with assessing seasonal risk and identifying vulnerable areas of the country prone to E. coli-associated outbreaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.