Abstract

Retail meat products could serve as an important medium for the transfer of multidrug resistant isolates from food-producing animals to the community. In this study, the prevalence and characteristics of cefotaxime and ciprofloxacin co-resistant Escherichia coli isolates were investigated in retail chicken and ground pork samples from four provinces of China. The isolates were subjected to phylogenetic group typing and antimicrobial susceptibility testing. All isolates were further characterized by pulsed-field gel electrophoresis to determine the genetic relatedness. These isolates were also screened for beta-lactamase genes, quinolone resistance determinants by PCR, and followed by DNA sequence analysis. Cefotaxime and ciprofloxacin co-resistant E. coli isolates with diverse genetic origins were recovered in 31.9% (106/332) of retail meat samples. E. coli isolates of phylogenetic group A were dominant (59.4%, 63/106), and all isolates showed multidrug resistant profiles. The dominant resistant profiles were AMP-CAZ-CTX-CIP-CHL-GEN-SXT-TET (n=43) and AMP-CAZ-CTX-CIP-CHL-SXT-TET (n=43). Point mutations in quinolone resistance determination regions of topoisomerases were identified in all the isolates, and most of the isolates accumulated three (n=78) or four (n=21) point mutations. Plasmid-mediated quinolone-resistant determinants were identified in 68 isolates, including oqxAB (n=66), qnrS1 (n=7), qnrS2 (n=4), and aac(6')-Ib-cr (n=9). Eight subtypes of blaCTX-M were identified in 103 E. coli isolates, and blaCTX-M-55 (n=90) was dominant. This study highlights that retail meat could serve as an important reservoir of cefotaxime and ciprofloxacin co-resistant E. coli isolates. It is necessary to evaluate their contribution in the community and hospital infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call